Si-containing copolymer of 2,3-epoxypropyl-1-methacrylate

Photoresist sensitivity and plasma-etching behaviour

Gerhard Reinisch^{1,*}, Lothar Wigant¹, Rose Krüger¹, and Michael Köhler²

¹Bereich Makromolekulare Verbindungen, Zentralinstitut für Organische Chemie, Rudower Chaussee 5, O-1199 Berlin, Federal Republic of Germany ²Physikalisch-Technisches Institut, Helmholtzweg 4, O-6900 Jena, Federal Republic of Germany

Summary

Poly-p-trimethylsilylphenylmethacrylate(75)-co-glycidylmethacrylate (25) containing aromatic bisazides exhibits uv sensitivity as a negative type photoresist. Sensitometric data have been evaluated. The pressure-dependant reactivity under the conditions of oxygen reactive ion etching was determined.

Introduction

The most widely used photoresists consist of solid solutions of 2,1-diazonaphthoquinone-5-sulfonic acid esters in novolak resins (DNN resists) Microstructures are usually realized in these photoresist layers by transforming a mask pattern by irradiation systems into the resist and developing the carboxyl group containing latent pattern by means of organic bases. Two-layer resists are composed of a DNN bottom layer of about 2 μ m thickness, planarizing the stepped surface and a thin imaging layer. The upper layer is used as mask for anisotropic etching Organosilicon polymers (1), polysiloxanes (2), and silicon-containing polymers (3) of different structures exhibit a strong resistance to 0, reactive ion etching and are therefore preferred as top layers.

We synthesized a copolymer of 2,3-epoxypropyl-1-methacrylate and investigated its sensitivity to network formation by aromatic nitrenes. Nitrene formation was initiated in spin-coated layers of polymer/bisazide composites by uv irradiation. Poly-GMA and its copolymers are highly sensitive to nitrenes formed by irradiation of bisazides (4,5). Furthermore, GMA-polymers are preferable top layers as they adhere very strongly to any kind of bottom material.

^{*}To whom offprint requests should be sent

Experimental

Monomers, Azides

Glycidyl methacrylate (GMA) was purchased from Aldrich Co. purified by extraction of the stabilizer and destilled twice prior to use. The synthesis of 4-trimethylsilylphenyl methacrylate (SiPMA) was realized according to (6) starting from p-chlorophenol. C₁₃H₁₈O₂Si (234.3), calc. C 66.62, H 7,74, Si 11.97; found C 66:50, H 7.67, Si 11.19; b.p.(0.1 mm) 110[°]C. 4,4'-Bisazidodiphenyl (m.p. 128[°]C) was obtained by diazotization of benzidine and reaction with sodium azide (7). 2,6-Bis(4-azidobenzylidene)-4-methyl cyclohexanone (BABC) from Aldrich Co. was used after drying.

Polymers

Polymerizations were carried out in dried degassed methylethylketone containing 15 % monomer under N₂ and stirring at temperatures in the range of 60 - 70 °C with 2^{2}_{2} '-azobisisobutyronitrile (AIBN) as initiator (Table 1). The polymers were precipitated in methanol. The Si-content of the copolymers is slightly lower (9.5%) than the value calculated for the monomer mixture (9.95%).

Monomers mole%	AIBN mole%	Temp. ^O C	Time h	Conv. %		Mw	м _w /м	n Tg C
SiPMA (100)	0.30	70	12	50	110	000	A 3.	0 123
SiPMA (75) GMA (25)	1.0 0.42 0.12 0.24 0.24 0.24	70 70 70 70 65 60	11 11 12 11 13 13	75 70 60 75 55 15	81 90 195 153 178 196	000 000 000 000 000 000	B 2. C 2. D 3. E 2. F 2. G 2.	7 9 5 2 106 5 1

Table 1. Polymerization conditions and polymer data

Resist sensitivity, plasma etching

15% w/v of copolymer E and 1.2% w/v of a bisazide were dissolved in purified chlorobenzene. The solutions were spin-coated (3000rpm) onto chromium-covered glass disks to form 0.6 µm films. After prebaking 20 min at 80°C the resist composite was irradiated by a highpressure Hg lamp through a mask. Methylisobutylketone(2)/isopropanol(3) v/v was used as developer. The patterned negative layer was postbaked for 20 min at 120 °C, coated with Al by vapour deposition and the time (energy) dependent increase of layer thickness determined by interferometry. Oxygen reactive ion etching (0_2 -RIE) was performed in a parallel plate stainless steel RIE equipment (ZWG Berlin) with 5-inch Alelectrodes. The etching experiments were conducted at a flow rate of 16 sccm oxygen, power density of 0.68 W/cm² and pressures of 1 - 8 Pa. The layer thickness was determined continuously by ellipsometry.

Results and Discussion

Under the influence of RIE-0, thin layers of silicon-containing polymers are transformed intó a continuous layer of $SiO_{2}(1,2,3)$. Its thickness is governed by the percentage of Si in thé starting polymer and decreases in the course of the etching process. A minimum Si content of about 10% w/w Si is necessary. The homopolymer poly(4-tri-methylsilylphenyl)-methacrylate(11.9% Si) could thus advantageously be applied as a protecting layer. But it was to be expected and proved by preliminary experiments that its reactivity to nitrenes is much too low for resist application. In this respect poly-GMA is a highly reactive material as the formation of a stable network layer to an extent of 60% (cf. Fig.1, $d/d_0=0.6$) requires an irradiation dose $D_0^{0.6}$ of only 5 mJ/cm² (5) compared to more than 2500 mJ/cm² for poly-phenylmethacrylate and poly-SiPMA. From further preliminary experiments we chose copolymers containing 9.5% Si, synthesized from monomer mixtures of 75 mole% SiPMA and 25 mole% GMA. As sensitivity and etch resistance proved to be independent of the molecular weight in the investigated range (cf. Table 1) we applied copolymer E (M_w 153 000) for the irradiation and etching experiments,

The sensitivity of resist layers consisting of copolymer E and 8% w/w of BADP (λ_{max} 293 nm) or BABC (λ_{max} 353 nm) amounts to D^{0,6} = 60 mJ/cm², irrespective of absorption region and extinction coefficient of the bisazides, thus permitting an effective patterning of resists (Fig. 1). A 1 µm line and space pattern is sharply resolved.

The etch results (Fig. 2) demonstrate that the etch rate of the copolymer E at 1.7 Pa (70 nm/min) is sufficiently lower than the according value for a conventional DNN resist (360 nm/min). An application of the copolymer/bisazide compound for pattern transfer into DNN resists by RIE-0, seems to be possible. With increasing pressure the ion energy of RIE-0, systems decreases (8). Hence the slightly decreasing rate of the DNN resist seems to be a consequence of these relations. Surprisingly the Si containing copolymer exhibits an inverse behaviour (Fig.2). This might be explained by a quite different oxidation mechanism of polymethacrylates under RIE-0, conditions compared with phenolic resins. The latter may form condensed rings as the pressure increases.

- (o) 4,4'-Bisazidodiphenyl
 (•) 2,6-Bis(4-azidobenzylidene)-4-methylcyclohexanone

Fig. 2. Reactive Ion Etch Rate as a Function of Pressure

- (a) Copolymer E(b) DNN Resist ORWO

Acknowledgements

Financial support by Fotochemische Werke Berlin-Köpenick is gratefully acknowledged. We thank Dr. G. Schulz (ZIOC/MV Berlin) for GPC analyses of the polymers.

References

- 1. M. Morita, A. Tanaka and K. Onose, J. Vac. Sci. Technol. <u>B</u> 4, 414 (1986); M. Toriumi, H. Shiraishi, T. Ueno, N. Hayashi, S. Nonogaki, F. Sato and K. Kadota, J. Electrochem. Soc.<u>134</u>, 936
- 2. D. C. Hofer, R. D. Miller and C. G. Willson, Proc. of the Int. Soc. for Optical Engg. (Proc. SPIE) 469, 18, 108 (1984)
- Y. Ohnishi, M. Suzuki, K. Saigo, Y. Saotome and H. Gokan, Proc. SPIE 539, 62 (1985)
 L. Wigant, H. Pasch and H.-J. Lorkowski, J. Inf. Rec. Mat.
- <u>16</u>, 15 (1988)
- 5. G. Reinisch, L. Wigant, W. Hiller and R. Schmolke, Angew. Makromol. Chemie in press
- 6. Brit. Pat. 2 097 143 (G. N. Taylor, Western Electric Co.), cf. Chem. Abstr. <u>98</u>, 170 380 (1983); G. N. Taylor and Th. M. Wolf, Proc. of the IUPAC 28th Macromol. Symposium Amherst/USA 1982, 411
- 7. H. Rager and E. Bretschneider, Mh. f. Chem. <u>81</u>, 970 (1950)
- 8. A.M. Hartney, Proc. SPIE <u>771</u>, 353 (1987)

Accepted October 30, 1991 С